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Equations for magnetization processes 
based on the laws of thermodynamics 
LYNN J. BRADY 
P. O. Box 396, Camden, South Carolina 29020, USA 

A series of logarithmic equations founded on thermodynamic principles are used to 
rationalize the process of magnetization. These equations yield precise power-law fits for 
the virgin magnetization curves of single-crystal and polycrystalline specimens. Using 
these equations, values of Ms are obtained without using laborious extrapolation 
procedures. This characteristic, together with their extreme simplicity and their ability to 
follow and account for the magnetization of different products over all field values, makes 
them very useful. These equations, their derivations and supporting data are presented in 
this report. 

1. I n t r o d u c t i o n  
It is claimed [ 1 ] that the familiar hysteresis loops 
of common magnets have such varied and com- 
plicated shapes that there is little hope of inter- 
preting them by a formal theory, without intro- 
ducing a large number of parameters. We shall 
show, however, that this number can be reduced 
to just a few by using a series of simple logarithmic 
equations in succession to follow the normal 
magnetization of sing!e-crystal and polycrystalline 
products. 

Then, we shall show that these equations yield 
an insight into the physical changes which take 
place in a specimen when it is magnetized. For ex- 
ample, by their means an explanation is obtained 
for the formation and the collapse of domains of 
reverse magnetization. It is apparent, therefore, 
that where magnetization processes are involved, 
they are analogous in function to the equations 
which are" used in chemical kinetics to explain 
reaction mechanisms. 

By means of log-log plots, based on these 
equations, precise values of M* are obtained for 
materials with different crystal structures [2]. 
Since this is done without using the laborious ex- 
trapolation procedures required by the law of ap- 
proach [3], they are very useful. 

2. The displacement of domain walls 
In order to derive these equations, let us consider 
the physical changes which take place in a speci- 

*M s = saturation magnetic moment cm- 3. 
�9 19 77 Chapman and Hall Ltd. Printed in Great Britain. 

men when it is magnetized. The specimen selected 
for study is comprised of polydomain crystallites. 
Since a crystallite's domains do not extend beyond 
its boundaries these domains are designated micro- 
domains in this report. 

When the specimen is placed in a weak field, 
one of the microdomains of a crystallite selected 
at random grows at the expense of the crystallite's 
remaining microdomains. This occurs, according to 
theory [4], because the domain which grows has a 
more favourable orientation with respect to the 
field than those of its neighbours. 

This growth continues, as the field strength is 
increased in value, until the boundaries of the 
favoured microdomain correspond to those of the 
crystallite. There they are pinned, as the field 
strength is raised, until the critical field strength of 
the microdomain is reached. When this is exceeded, 
the walls of the microdomain snap and, thereby, 
form a macrodomain as illustrated by De Blois' 
classic example [5]. 

The macrodomain formed by this irreversible 
process obviously contains more than one crystal- 
lite within its boundaries. Hence, it can only be 
distinguished from a domain of reverse magnetiz- 
ation by the energy required to produce it. A 
domain of reverse magnetization, according to our 
theory, is formed by magnetization reversal. 

When the volume of a domain changes revers- 
ibly, under constant temperature and pressure con- 
ditions, its internal energy E is changed by dE,  
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where 

dE = T d S - - p d v ,  (1) 

according to the laws of thermodynamics. S is the 
entropy at the temperature, T(K) of a domain 
selected at random, v is its volume, and p is an ex- 
ternal pressure. 

The internal energy of this domain is a single- 
valued function of its variables. Therefore, E is ex- 
pressed in terms of its components, Era, Ek, and 
Eo, in the following equation: 

E = E~  + E ~  + E o .  (2) 

This is done so that equations containg these terms 
may be derived for the magnetization processes. 
The term, Em =--HAM, introduced here is the 
energy of magnetic interaction between Ha, the 
applied field, and M, the magnetization of the 
selected domain in the applied field direction. Ek 
is the energy of crystal anisotropy and E o is the 
sum of the following energy terms: E r ) =  the 
energy of shape anisotropy of the crystallite, Ea = 
the energy of magnetostriction, Ee = the exchange 
force energy, E N = the energy of self-demagnetiz- 
ation of the specimen, and ER = all remaining' 
energy terms we may have neglected. These energy 
terms, obviously, are those of a crystallite selected 
at random. Consequently, they are used to express 
its internal energy, as well as the internal energies 
of its microdomains on a proportional volume 
basis. 

In order to use these energy terms, we use 
Gibbs' free energy function [6]. 

G = E + p v - -  TS, (3) 

in which G is Gibbs' free energy. The term E in 
�9 this equation, is replaced by its components, Ek + 
E o - - H A M ,  from Equation 2. The resultant ex- 
pression, when differentiated, yields the equation, 

HadM = ( d E  k + dE 0 + p d v ) -  (Md/-/a + TdS), 

(4) 

after the terms, dG, dT and dp are equated to 
zero. This equation gives the reversible changes of 
magnetization permitted to take place in a crystal- 
lite, or its microdomains on a proportional volume 
basis, when the temperature and pressure are con- 
stant. It is obviously difficult, if not impossible, to 
separate the variables in this equation so that it 
can be solved in a straightforward manner. How- 
ever, its form suggests that the empirical relation- 
ship, 
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(dE k + (tE O + pdv) -- (MdH a + TdS) = koxMdHa, 

(5) 

may be used to obtain the approximate solution, 

kollnHa = l n M +  Col (6) 

to Equation 4. The terms, kol and Cox, in this 
equation, are a proportionality constant and a con- 
stant of integration, respectively. 

In order to establish the validity of this pro- 
cedure, the magnetization of each microdomain in 
the specimen, as expressed by Equation 6, is multi- 
plied by the volume of the microdomain to which 
it pertains. The products of this operation when 
summed and divided by the volume of the speci- 
men yield the equation, 

lnHa = kx In Mn, (7) 

in which kl is a proportionality constant and Mn 
is the normal magnetization of the specimen. 

This equation follows the magnetization of a 
given specimen from Ha = 0 to the field at which 
its first macrodomain is formed. Thereafter, the 
equation, 

lnHa = k21nMn + c: ,  (8) 

in which k2 and Ca are constants, is used. It fol- 
lows the specimen's virgin magnetization curve 
over the lower half-portion generally attributed 
[7] to the irreversible domain wall displacement 
process. The precision with which Equations 7 and 
8 can follow the magnetization of diverse materials 
is readily established. Thus, published values of Ha 
vs Mn from reliable sources are plotted in ln- ln  
form. 

Equation 8 is founded on the theory that each 
time a microdomain wall snaps, a macrodomain is 
either formed or enlarged. As a result, the internal 
energy of the specimen jumps by AE as manifest 
by the Barkhausen [8] increase in its magnetiz- 
ation. Since, 

G = E k +Eo  + p v - - H a M - - T S ,  (9) 

according to Equations 2 and 3, it is evident that 
between jumps the reversible change in magnetiz- 
ation of the specimen is given by the expression, 

Z H a d ~ /  = 2~(dAEk + dAEo + pdAv  

-- AMdHa -- TdAS), (10) 

provided the temperature and pressure are cons- 
stant. A is used in this expression in accord with 



convention [9] to indicate that the sum is taken 
over both micro- and macromagnetic species in 
this magnetization process. 

Equation 10 is evaluated to a first approx- 
imation by means of Equation 6. Thus, the magnet- 
ization of each domain, as expressed by Equation 
6, is multiplied by the volume of the domain to 
which it pertains. The products of this operation 
are summed and then divided by the volume of the 
specimen. When the specimen consists of a large 
assemblage of crystallites, these operations are re- 
peated at a second field value much stronger than 
the first. The equations obtained are then solved 
simultaneously to smooth out the Barkhausen 
jumps. Thus, Equation 8 is obtained. 

3. The rotational processes 
After the specimen's microdomain walls have 
snapped, its magnetization vectors rotate in the 
applied field direction as the field strength is in- 
creased in value. Hence, the equation 

~HadM = ~ ( d E  k 4- d E  0 q- pdv - -Mdt t  a -- TdS), 

(11) 

gives the changes of magnetization permitted to 
take place in a macrodomain selected at random. 
This expression, based on Equation 9, is restricted 
to applications where the pressure and temperature 
are constant and magnetization reversal is not in- 
volved. Here the sum is taken over all crystallites 
in the macrodomain. 

According to our theory, when magnetization 
reversal is excluded, Equation 11 can only be 
applied to a macrodomain whose constituent crys- 
tallites are perfect. We propose to test this theory 
by means of such a specimen. Equation 11 is 
solved to a first approximation by means of 
Equation 5. Then by extending the procedure by 
which Equation 7 was derived so that it applies to 
the specimen's macrodomalns, the equation 

lnHa = k31nM~ + c3, (12) 

is obtained. We use this to follow the magnetiz- 
ation attributed to rotation of the magnetization 
vectors of the specimen we shall employ whose 
crystallites are perfect. Then we show that the 
equations, 

lnHa = k41nMn + c4, (13) 

lnHa = k s l nMn  + cs, (14) 

lnHa = k61nMn + c 6 (15) 

are needed to follow the magnetization associated 
with the rotation of a specimen's magnetization 
vectors when its constituent crystallites are im- 
perfect. 

Equation 13 will be used at field values less 
than Ha, the field at which magnetization reversal 
becomes complete in a specimen comprised of im- 
perfect crystallites. Therefore, according to our in- 
terpretation, it follows the specimen's magnetiz- 
ation curve over the upper half-portion generally 
attributed [7] to the irreversible domain-wall 
displacement process. 

Following the use of Equation 13, Equations 
14 and 15 are used in succession to follow the 
magnetization of the specimen over the range 
ascribed [7] to the rotation of its magnetization 
vectors. Thus, Equation 14 is used to follow its 
magnetization over the range, Hs ~< Ha -< A --~ H;g, the 
effective anisotropy field value, and Equation 15 is 
used at field values greater than H~an. 

Equations 12 to 15 are based on the process 
generally assumed to take place in a macrodomain 
selected at random. The magnetization vectors of 
its constituent crystallites rotate in the appfied 
field direction as the field strength is increased in 
value. Consequently, the magnetization of a 
macrodomain increases, with increasing field 
strength, when the magnetization vectors of its 
constituent crystallites are inclined in the applied 
field direction. Conversely, when these vectors 
point away from the applied field direction, the 
magnetization of the macrodomain decreases with 
increasing field strength until it equals zero, then 
its magnetization vectors turn over in the field, 
Her, where ~HadM = 0. We show, however, that at 
this field value 

E(p6vr--  T6Seo~f) = 0 (16) 

must be satisfied to comply with the laws of 
thermodynamics. The term, E6v~, in this ex- 
pression, is the change in the volume of the macro- 
domain resulting from its magnetization reversal 
and E6Scon~ is the accompanying change in its con- 
figurational entropy [ 10]. 

The configurational entropy of a crystallite 
depends on its perfection. Hence, the configur- 
ational entropy of a macrodomain is defined by 
means of the equation 

]~T6Seon~ = 2;((3Ekr + ~Eor --~Gr) = ~T~Sr. 

(17) 
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where the subscript r in this expression, denotes 
association with the turnover of the crystallite's 
magnetization vectors. 

This equation is derived by summing the free 
energies, expressed by Equation 9, of the macro- 
domain's constituent crystallites. The decrement 
of the resultant expression yields 

E6Gr = E(6Ekr + 6Eor + p6vr -- Ha6Mr 

- -  Mr~Ha -- r6sr ) ,  (18) 

after the restrictions are imposed that the decre- 
ments are those of magnetization reversal and 6p 
and 6 T equal zero. Since the terms, F, HaSMr and 
EMr6Ha, must equal zero when magnetization 
reversal takes place, it is apparent that, by means 
of this equation, Equation 17 is obtained. 

Equation 17 makes it evident that when the 
macrodomain's crystalhtes are perfect ~;6Seon~ = 
0. Therefore, when its magnetization vectors turn 
over, they make angles of 180 ~ with their original 
directions. Moreover, they must turn over in 
unison to keep the macrodomain's volume con- 
stant and, thereby, satisfy Equation 16. We use 
Equation 12 to follow this unique magnetization 
process which is only exhibited by a specimen 
whose crystallites are perfect. 

Conversely, when the crystallites are imperfect, 
which is the normal state [11], 26Seonf =P 0, 
according to Equation 17. In this case, the angle of 
vector turn over are less than 180 ~ and ~6v~ must 
be greater than zero to satisfy Equation 16. It is 
theorized that this change in the volume is realized 
when a Bloch wall sweeps through the macro- 
domain turning over most of its magnetization 
vectors. This occurs in the field, Ha = Her where 
ESM~ = 0. The crystallites whose magnetization 
vectors are not turned over in this field, because 
occlusions and other imperfections intervene, form 
domains of reverse magnetization. 

The near annihilation of a macrodomaln in its 
critical field, Her, adds to the growth of its neigh- 
bours. These are oriented with the magnetic vec- 
tors of their constituent crystallites inclined in the 
applied field direction. It will be recognized that 
these processes are analogous to those expressed 
by means of Equation 10. Hence, by means of 
Equation 10 and the procedure by which Equation 
8 was derived, Equation 13 is obtained. 

Magnetization reversal becomes complete in the 
field, Hs, when the specimen's crystallites are im- 
perfect. Thus, Equation 11 gives the reversible 
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changes of magnetization permitted to take place 
in a macrodomain when Hs ~< Ha ~ HeAU and the 
temperature and pressure are constant. In this case 
its terms, M, Ek, Eo, v and S are treated as exten- 
sive variables whose values change with increasing 
field strength. These changes are observed because 
a macrodomain with a favoured orientation grows 
at the expense of its neighbours, as the field 
strength is increased in value. This growth con- 
tinues until the field, HeA~, is reached, where the 
specimen consists of a single macrodomain and its 
consort of domains of reverse magnetization. To 
follow this process Equation 14 is derived by 
means of Equation 6 and the procedure used to 
obtain Equation 8. 

When Ha is made greater than He~, the domains 
of reverse magnetization become unstable [12]. 
Consequently, they collapse irreversibly because 
5Sconf :/: 0 and, hence, give final and complete 
satisfaction to Equation 16 at very high field 
values where Ha >>HeA~. Equation 15, which fol- 
lows this magnetization process, is derived by 
means analogous to those used to obtain Equation 
13. 

4. Experimental 
The theories we have advanced are tested by 
showing that only Equations 8 and 12 are needed 
to follow the virgin magnetization of specimens 
whose constituent crystallites are single-domain 
and perfect. In this case, the integration constant 
c2 in Equation 8 equals zero because the speci- 
men's microdomain walls cannot move reversibly. 
Other tests show that Equation 8 with c2 = 0, 
Equations 13 and 14, used in succession, are 
needed to follow the magnetization of a specimen, 
whose single-domain crystallites are imperfect, 
over the range 0 <~ Ha ~< HeAu. 

Additional tests show that Equations 7, 8, 13, 
14 and 15 are needed to follow the magnetization 
of products comprised of polydomain imperfect 
crystallites. These tests are culminated by showing 
that Equations 14 and 15 yield the precise value of 
Ms for pure nickel without using laborious extra- 
polation procedures. 

The specimens of single-domain crystallites re- 
quired for the tests were prepared by modifying 
the procedure Shrik and Buessem [13] developed 
to make their glass products containing barium 
ferrites. Pure B2 03, BaCO3, and Fe20a powders 
were mixed together in the following proportions 
by weight: 12.1, 52.9 and 34.9, respectively. This 



Figure 1 SEM micrographs of hexagonal barium ferrites (a) a water-leached specimen from the 1500 ~ C melt, (b) an 
oriented BaFe12 O~9 section from a speaker magnet. 

mixture was calcined to 700 ~ C to form a friable 
cake, portions of which were subsequently heated 
to form melts which were poured at 1200 ~ C and 
1500 ~ C, respectively. These melts were poured 
into water to "freeze" in their high-temperature 
crystal structures. 

This procedure was followed because phase 
diagrams [14, 15] led to the conclusion that the 
1200 ~ C melt should produce specimens consisting 
of ferrite building blocks [15] and imperfect, 
single-domain, ferrite crystallites in a glass matrix. 
Therefore, according to our theory, Equations 8, 
13, and 14, when used in succession, should follow 
the magnetization of specimens produced by the 
1200 ~ C melt over the range of 0 ~< H a <~ H~fe. 

Phase diagrams [14, 15] and theories of crystal 
growth [11 ],  however, lead to the conclusion that 
the crystallites produced by the 1500~ melt 
should approach perfection, and this conclusion is 
supported by the SEM Micrograph shown in Fig. 
1. Fig. la is the micrograph of a water-leached 
specimen from the 1500~ melt. The perfection 
of the hexagonal crystallites produced by this melt 
is made apparent by comparing their micrograph 
with that of an oriented BaFe12 O19 section from a 
speaker magnet shown in Fig. lb. This perfection 
is also made apparent by comparing the micro- 
graph of the water-leached specimen produced by 
the 1500~ melt with a micrograph of a water- 
leached specimen from the 1200 ~ C melt, shown in 
Fig. 2. 

The specimens produced by the melts are 
believed to have the empirical chemical formula, 

2+ 3+ Ba2F% Fe120~2. This noteworthy conclusion is 
based on phase diagrams [15] and the anisotropy 
field value, H A = 28.6 kOe, derived for the speci- 
mens produced by the 1200 ~ C melt. This value is 

based on the approximation [16] , H  A ~ 2Hs, and 
the term, Hs = 14.3 kOe, which we shall establish 
by means of the specimen's magnetic moments 
[17]. The anisotropy field value, H A = 28.6 kOe, 
compares well with H A = 28.0 kOe reported [15] 
for Ba2 Co2§ This comparison gives us con- 

B% F% Fe12 O22, fidence in assigning the formula, z§ 3+ 
to the specimens produced by the melts. 

The near perfection of the crystallites produced 
by the 1500~ melt makes their configurational 
entropies approach zero. Consequently, the speci- 
men's magnetization cannot be reversed by means 
of Bloch wall displacement. There is no reason to 
believe, however, that this perfection should in- 
terfere with the formation of macrodomains. 
Therefore, Equation 8, with c2 = 0, and Equation 
12, used in succession should follow the magnetiz- 
ation of the specimens produced by the 1500~ 
melt until magnetization reversal takes place in 
one of its macrodomains. This occurs at very high 
field values [18] when its magnetization vectors 
turn over in unison, accordinz to EQuation 16. 

Figure 2 A SEM Mierograph of  a water-leached specimen 
from the 1200 ~ C melt  showing the imperfect  crystaUites 
produced.  
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Figure 3 The virgin hystersis loops of the specimens pro- 
duced by the 1200 ~ C and 1500 ~ C melts, respectively. 

5. Results and discussion 
The virgin hysteresis loops of typical specimens 
produced by the 1200 and 1500~ melts are 
shown in Fig. 3. The normal magnetic fiaoments re- 
ported for these specimens are room-temperature 
values measured [17] in fields whose maximum 
strengths were 21 kOe. The curves shown are for 
specimens as-produced. Added sample preparation 

was avoided, since it might obscure the magnetiz- 
ation processes we wished to follow. 

These processes are followed by means of the 
log-log plots of Ha versus un, the normal magnetic 
moment per gram, presented in Fig. 4. It is seen, 
that the plot for the specimen produced by the 
1200 ~ C melt has three branches while that for the 
specimen produced by the 1500 ~ C melt has two. 
In each case, the initial branch at low field values 
is attributed to the snapping of microdomain walls 
to form macrodomains and, hence, the magnetiz- 
ation of these specimens is followed by means of 
Equation 8 with c2 = 0. 

The second branch of the log-log plot of H a 
versus an for the specimen produced by the 
1500~ C melt is attributed to rotation of its mag- 
netization vectors. Since magnetization reversal 
does not occur, this process is followed by means 
of Equation 12. However, the second branch of 
the log-log plot for the specimen produced by the 
1200 ~ C melt is attributed to the rotation of its 
magnetization vectors with magnetization reversal 
taking place by means of Btoch wall displacement. 
Hence, Equation 13 is used to follow this process 
at field values less than Hs. Equation 14 is then 
used to follow the magnetization of this specimen 
over the range, H s < H a < HA~, where rotation of 
the magnetization vectors and growth of a macro- 
domain with a favoured orientation are assumed to 
take place. 

These interpretations are shown to be reason- 
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Figure 4 Log-log plots of Ha versus an for the 
specimens whose virgin hysteresis loops appear 
in Fig. 3. 
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Figure 5 L n - l n  plot of  H a versus Mn for 
Sizoo's single-crystal iron specimen No. 1. Data 
f rom ref. (18). 

able by means of Figs. 5 and 6. Thus, Fig. 5 pre- 
sents a ln- ln  plot of Ha versus Mn for Sizoo's 
[19] single-crystal iron specimen No. 1. The mag- 
netization data for this specimen cover .the range 
0 <Mn <Ms and hence, 0 < H a  <Hs.  As a conse- 
quence, its in-In plot has only three branches. 
These are precisely followed by t~sing Equations 7, 
8 and 13 in succession. 

Fig. 6, on the other hand, always displays log-  
log plots of He versus Mn which have four 
branches. The fifth branch required by theory 
does not appear because 0 < H a  < Heaf~. These log 
log plots, which are followed by means of 
Equations 7, 8 13 and 14, used in succession, are 
for the following products: (8611)= ferrocobalt, 
(149)=nickel  with 0.7wt%Mn, and (155)= 
malleable Heusler alloy. Data used to construct 
these log-log plots are from the International 
Critical Tables [20], which should be consulted to 
learn the details of specimen preparation. The 

arrows in this figure, as well as the one in Fig. 4, 
indicate the values of Hs, and it is found from Fig. 
4 that H s = 14.3 kOe and, hence, H A ~ 28.6 kOe 
at room temperature for the specimens produced 
by the 1200 ~ C melt. These arrows make it evident 
that Equations 14 and 15 have a common solution 
at the  point, (Hs, Mn). Weiss and Forrer's data 
[20], for an isotr015iC Spheroidal nickel specimen, 
are used to establish the value of Mn at this field 
value. These data are also used to show that 
Equation 15 is needed to follow the magnetization 
of a specimen at field values greater than HAg. 

In the field Hs the change in magnetization 
permitted to take place in each crystallite in an 
arbitrary specimen is expressed by the equation, 

H s d M -  d E  N = d ~ k  n t- d E  a -1- d E  e + d E  D -1- d E  R 

+ p d v  - -  T d S  (19) 

when the temperature and pressure are constant. 
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Figure 7 Log-log plot of Ha versus cr n used to derive the 
value of Ors for Weiss and Forrer's pure nickel specimen. 
Data from ref. (19). 

At this field value, volume changes due to "forced" 
magnetostrietion are very small [21], so that the 
terms pdv and dEa may be ignored, when seeking 
an approximate solution to Equation 19. It is safe 
to assume that the terms dEe, dER, and--TdS 
may also be neglected in solving Equation 19 to a 
first approximation. 

The remaining terms yield the Equation [16], 

(H  A --LSMs) sin 20 = 2(H s - -~ sin (~ --0),  

after the required susbtitutions. The anisortopy 
field H A in this expression, is approximately equal 
to 2K1/Ms, where K~ is the first-order anisotropy 
constant [22] ; a is the angle of inclination of a 
given crystallite's easy direction from the applied 

field directioi~ and 0 gives the angle of rotation of 
its magnetization vector fror~ its rest position;/3 is 
the averaged demagnetization coefficient for the 
crystallite's shape anisotropy; 2V is the averaged 
self-demagnetization coefficient of the specimen 
and 3~r is its averaged magnetization in the applied 
field direction. It is evident, therefore, that by 
using averaging techniques, Equation 20 can be 
applied to anisotropic specimens [6] as well as to 
those which are isotropic. 

When Equation 20 is applied to an isotropic, 
spherical specimen, it is satisfied by means of the 
following values: 13= 2rr, H s =H A /2  [16], ~-= 
4rr/3 [23] ~ = 3 0 ,  and M=3Ms/4. Thus, by 
means of Equation 20, it is found that Equations 
13 and 14 have a common solution at the point 
(Hs, Mn = rrMs/Fr where Mn is the averaged value 
of Mn in the hard and easy directions of mangetiz- 
ation. 

Fig. 7 demonstrates the precision with which 
Equations 13 and 14 yield crs. The data used to 
construct the log-log plot of Ha versus on in this 
figure are those attributed [20] to Weiss and Forrer 
under the key number (147). The values of an tabu- 
lated [20], are those of a spheroidal nickel speci- 
men whose impurities and self-demagnetization 
have been taken into account, so that the tabu- 
lated values of Ha versus on, shown in Fig. 7 in 
log-log, form, yield the value of as directly. 

Values of an at field values less than 1000Oe 
are not reported [20] for this specimen, so that 
Equations 7 and 8 cannot be used to follow its 
magnetization resulting from domain-wall displace- 
ment. Sufficient data are available, however, to 
determine by means of Fig. 7 that Equations 13 
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and 14 have a common solution at the point,  (log 

Hs = 3.50650, log Os = 1.73555). Thus, it is found 

that Hs = 3210 Oe and crs = 54.39 emug -1 . 

It is reported [20] that  Weiss and Forrer 

derived the value, as = 54.5 emu g- 1, for nickel at 
18.4 ~ C by means of  extrapolat ion procedures and 

the data used to construct Fig. 7. Since the value, 

o s = 54.39 emu g- 1, is currently accepted [24] for 
nickel at 20 ~ C, it is concluded that  Equations 13 
and 14 yield saturation values, within the precision 

limits of  the measured On values. This conclusion 

is supported by the Ms values previously derived 
[2] from log plots of  Ha versus Mn for a num- 
ber of  products not  considered here, including 

BaFe,2 O19 and Sml/2 Prl/2 Cos. 
In conclusion the fifth branch of  the nickel 

l og - log  plot  is presented in Fig. 8. This branch, 
which is based on Equation 15, shows that  the 
specimen's domains of  reverse magnetization col- 
lapse in fields where Ha > HeArt = H A --  ]~Ms. Data 
for this plot are those of  Weiss and Forrer 's  [20].  
This plot  eliminates the non-linearity observed in 
Fig. 7 at field values greater than HAg. This is done 

by  plott ingl  log (Ha --H~er) versus log (On --  Os). 
Where the precision of  the magnetic measurements 
just ify the utmost  rigour, the magnetic moment  at 

HeAee should be employed instead of  Os. but  tiffs 
was not  just if ied in preparing Fig. 8. In preparing 

Fig. 8, the value 13 = 2rr was used. In preparing 
was assumed that  the relationship, H A = 2Hs [16] 
holds to a first approximation.  The results seem to 

just i fy these conclusions. 
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